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ANALYTIC THEORY OF ICRF MINORITY HEATING*

Huanchun Ye and Allan N. Kaufman
Physics Department and Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

ABSTRACT
"We present a one-dimensional analytic theory of the ICRF gyrores-
onant absorption and mode-conversion, for the problem of minority fun-
damental resonance. Using the wave phase-space method, and the theory
of linear mode conversion therein, we obtain explicit expressions for the
coefficients of transmission (T'), reflection (R), conversion (C'), absorp-
tion (A).

Ion cyclotron resonant heating is one the two main methods in tokamak heat-
ing today. Both the majority (denoted M) second-harmonic and minority (de-
noted m) fundamental resonances are employed, but the minority heating appears
to be predominant in present-day experiments. The majority second-harmonic
heating problem has been solved analytically 1], using the phase-space method
and the theory of linear mode conversion, for the one-dimensional slab model.
In this paper we extend our method to treat the fundamental resonance of the
minority ion species.

First we discuss briefly the phase-space concept and the theory of linear
mode-conversion. Consider the wave equation: D(z,k — —i9)E(z) = 0. To
the lowest order in WKB approximation, it leads to the familiar Hamiltonian
equations for rays: dx/dt = Ow/0k, dk/dt = —0w/dx, where w(x,k;t) is the
solution of D(x,t;k,w) = 0. Conventionally the above wave equation is regarded
as a differential equation in (x,¢). However, in order to fully understand the
wave dynamics, it is essential to treat x and k on an equal footing. There are
many advantages to this phase-space point of view. For instance, one would never
run into caustic singularities [2]. Another advantage, which is more important
for our present work, is that we may have a k-independent frequency function w,
corresponding to a mode that travels only in k-space [3]; thus the physics would be
obscured if we insist on staying in x-space. When two dispersion surfaces cross in
phase-space, where the two modes have the same frequency and wave vector, and
thus linear mode-coupling will occur. One mode, traveling on its own dispersion
surface, transfers part of its energy to the other mode. which goes off on the other
dispersion surface [Figure 1]. This is called linear mode conversion. When the
coupling is localized in phase-space, the mode-conversion problem can be solved
analytically [4].

The main idea in our analysis of ion gyroresonant absorption is to interpret it
as mode conversions. We observe that the N*}® harmonic gyroresonance conditions
w = ko + NQ(x) (N =1 for fundamental resonance) are in fact the dispersion
relations of Case-van Kampen (CVK) modes, one for each value of v;. Therefore

*Work supported by US DOE under contract No. DE-AC03-76SF00098



k

= k" v+ £2,(x)

(MS),,.. (MS)irarg.
k, = o
= Py
(MS)g Tl x
a =0 kl =- kO
Db =0 absorption |BW
Figure 1. Linear mode conversion. Figure 2. Dispersion diagram for ion gyroresonance.

ICRF heating can be viewed as mode conversions from the magnetosonic (MS)
wave to a continuum of CVK modes [1]. Note that these CVK modes travel in
k-space only, with velocity dk/dt = —NVQ.

We shall study the problem in the one-dimensional slab model: B(x) =
2B(z), where B(z) = (1 + z/Ly)B,. We assume a uniform plasma density,
and allow for small but finite k. The dispersion relation for the MS wave is
k2 — N2,w?/c% = 0 (N3, is defined below). The phase-space diagram of the dis-
persion relations of the MS wave and three representative CVK modes is shown
in Figure 2. We see that the CVK modes cross the two branches (incidence and
reflection) of the MS wave at two separate places. Thus we break the whole pro-
cess into several steps, each of which can be analyzed explicitly: (1) the incident
MS wave crosses the resonance layer and excites the CVK modes; (2) the CVK
modes propagate in k,-space; (3) the CVK modes cross the reflection branch
and convert part of their energy to the reflected MS wave; (4) the CVK modes
continue to travel in k,-space. But because they are kinetic in v, they contain
collective modes, among them the weakly damped ion-Bernstein wave (IBW); it
can leave the resonance layer, and be absorbed by electron Landau damping. The
percentage of the energy that goes into the IBW defines the conversion coefficient.
What is left in the CVK modes represents the direct absorption by the resonant
ions.

We list our results here; a more detailed discussion follows.
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Y = W/, Ny = kyca/w, Nig = [1 - (7m + 1)N|| 1+ (- 1)N|f]/[1 +
(73, - 1)N”] ky = Nygw/cy, v, is the minority thermal speed, and G(v) =
Im(vy) —w~ Yk v2 97 (v))s (9m(vy) is the unperturbed minority v-distribution).

The validity of the two-step mode-conversion approxlmatlon is that the k,-
width of each mode-conversion region, which is the inverse of the z-width of the
resonance layer, is much smaller than the separation of the two branches. The
width of the resonance layer comes from two contributions, one due to the mode
coupling, and the other due to the Doppler shift caused by the thermal spread
of v. In the case of minority fundamental resonance, the coupling parameter §
is the ratio of minority to majority plasma frequency: § = w,,/wys; hence the
width of the resonance layer is given by w — Q,,(z) — kyv,, ~ wé, which leads to
Az ~ Ly(6 + kyv,,/w); thus the validity condition is (Az)™! < 2k,.

The derivation of the equations can be outlined as follows. From Maxwell’s
equations we have V x V x E(x) = 4miwc~tJ(x; f), where the current J depends
functionally on the perturbed particle distribution function f(!). The familiar
procedure is to solve the linearized Vlasov equation for f(1), by integrating along
the unperturbed orbit, and obtain the current J = x - E, where x is the linear
susceptibility. But it is well known is that this introduces a (rapid varying) reso-
nant denominator into x. We can avoid this difficulty by omitting the resonant
particles from x; they remain as external current on the right-hand side of the

~wave equation. The motion of these particles is governed by their Vlasov equa-

tion. After some algebra, and using congruent reduction [5) to eliminate the other
components of the electric field, we obtain two coupled equations:

Dy(ziu) J(iu) =~ E(-)  De(k)E(-) = =% [ duy J(-3up),

where the dispersion functions are given by:
w - k“'l)” - Qm(l')
ww,'ﬁ, G(U") ’

[+ (v3, — NGRS — &Z)
(vdr — 1(3K2 + K} )"(’7M - Lw?/c?’

Here we keep terms O(k3p2). J = J, —iJ, = e, [dv.dv (v, — iv,)f) is the
resonant current, and E = E, —:E, is the component of electric field that rotates
in the ion sense. In the dispersion function D we have used the cold plasma
approximation, and ignored the z dependence of Alfvén speed c,4. Choosing either
the z- or k,-representation, one of the equations is algebraic. We can derive the
following conservation law for the wave-action flux:

56; ()s 6DE E¥z,k )] [ /dv” %z, k,;v”) = 0,

D;(z;v)) =

DE(k:r)
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where E*(z,k,) and J%(z,k,;v)) are the Wigner functions [2] of E and J respec-
tively. From this equation we can identify the wave-action flux associated with
CVK modes.

The solution of these equations closely follows that in [1], so we just outline
it here. For the two mode conversions (steps 1 and 3), we linearize the disper-
sion function about Fky: Dg(k,) = (k, F ko)Vg, where Vg = 4ky[1 — (7p —

1)N{?/(va — 1)®Niy. Then the coupled equations become a first order ODE, |

and can be solved easily. In between the two mode-conversion regions (step 2), we
ignore the coupling. Thus CVK modes propagate according to a simple equation:

[zt - i | J(haiy) = 0

where z(v) = — Lok v)/w. Below the second mode-conversion region, we cannot
ignore the coupling. Eliminating E we obtain the following CVK equation:

d Lyw?,
[f(”n)"dk ]J(’%;”n) D) C /d”n (kzi o),

whose solution can be obtained by the method of [6]. However, in that calculation,
the IBW can only appear as a superposition of CVK modes. In order to project
out the IBW, we use the spectral deformation technique {7].

In conclusion let us highlight the main points involved in our analysis: (1)
gyroresonant absorption as mode-conversion Case-van Kampen modes; (2) lin-
ear mode conversion in phase-space, and the closely related congruent reduction
theory; (3) spectral deformation technique, which helps us to project out the
ion-Bernstein wave. A more detailed account of this work is in preparation.
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